

Form: Course Syllabus	Form Number	EXC-01-02-02A
	Issue Number and Date	2/3/24/2022/2963 05/12/2022
	Number and Date of Revision or Modification	
	Deans Council Approval Decision Number	265/2024/24/3/2
	The Date of the Deans Council Approval Decision	2024/1/23
	Number of Pages	06

1.	Course Title	Cell and molecular biology
2.	Course Number	0501220
3.	Credit Hours (Theory, Practical)	3 Theory
	Contact Hours (Theory, Practical)	36 Lectures
4.	Prerequisites/ Corequisites	0501113
5.	Program Title	Doctor of Medicine
6.	Program Code	05
7.	School/ Center	School of Medicine
8.	Department	Physiology and biochemistry
9.	Course Level	Bachelor
10.	Year of Study and Semester (s)	Second year/ First Semester
11.	Program Degree	Bachelor
12.	Other Department(s) Involved in Teaching the Course	NA
13.	Learning Language	English
14.	Learning Types	<input checked="" type="checkbox"/> Face to face learning <input type="checkbox"/> Blended <input type="checkbox"/> Fully online
15.	Online Platforms(s)	<input checked="" type="checkbox"/> Moodle <input checked="" type="checkbox"/> Microsoft Teams
16.	Issuing Date	December 2023
17.	Revision Date	May 2025

18. Course Coordinator:

Name: Prof. Mamoun Ahram	Contact hours: Sunday-Thursday 1-2 PM
Office number: 148	Phone number: 065355000/23481
Email: m.ahram@ju.edu.jo	

19. Other Instructors:

Name: Prof. Nafez Abu Tarboush

Contact hours: Sunday-Thursday 1-2 PM

Office number: 137

Phone number: 065355000/23414

Email: n.abutarboush@ju.edu.jo

Name: Dr. Diala Abu Hassan

Contact hours: Sunday-Thursday 1-2 PM

Email: d.abuhassan@ju.edu.jo

20. Course Description:

A- Course Description:

such as replication, transcription, and translation, in addition to the study of basic molecular biology tools and techniques. This is a mandatory, three-credit hour course for second-year medical students. The course is designed to introduce students to the basics of cellular and molecular biology, which include the study of cell structure and the function of cell components, the chemical structure of genetic material, molecular processes

B- Aims:

The aim of this course is to allow the students to link the information and concepts of the biology of the cell and the chemistry of its genetic molecules to normal cell function, molecular processes, and human variation, and the development of diseases when perturbed stated in the approved study plan.

21. Program Intended Learning Outcomes: (To be used in designing the matrix linking the intended learning outcomes of the course with the intended learning outcomes of the program)

PLO's	*National Qualifications Framework Descriptors*		
	Competency (C)	Skills (B)	Knowledge (A)
1.	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
2.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
3.	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
4.	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
5.	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
6.	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
7.	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>
8.	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>

* Choose only one descriptor for each learning outcome of the program, whether knowledge, skill, or competency.

22. Course Intended Learning Outcomes: (Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

Course ILOs #	The learning levels to be achieved						Competencies
	Remember	Understand	Apply	Analyse	Evaluate	Create	
1.	✓	✓					Understand how cells function as a whole unit.
2.	✓	✓	✓	✓			Connect DNA to cell function and anomalies.
3.	✓	✓					Appreciate the role of molecular biology in medicine in terms of human phenotypes and diseases.
4.	✓	✓	✓	✓	✓	✓	Propose how different molecular techniques can be used in

							disease diagnosis and treatment.
5.	✓	✓	✓	✓	✓	✓	Interpret results of the various molecular techniques.

23. The matrix linking the intended learning outcomes of the course -CLOs with the intended learning outcomes of the program -PLOs:

PLO's * CLO's	1	2	3	4	5	Descriptors**		
						A	B	C
1	✓	✓	✓			✓	✓	✓
2								
3								
4								
5								
6				✓	✓	✓	✓	✓
7								
8								

*Linking each course learning outcome (CLO) to only one program outcome (PLO) as specified in the course matrix.

**Descriptors are determined according to the program learning outcome (PLO) that was chosen and according to what was specified in the program learning outcomes matrix in clause (21).

24. Topic Outline and Schedule:

Week	Lecture	Topic	Student Learning Outcome (SLO)	Descriptors **	Learning Types (Face to Face/Blended/ Fully Online)	Platform Used	Synchronous / Asynchronous Lecturing	Evaluation Methods	Learning Resources
1	1.1	Introduction into the cell	Recall cellular and molecular interactions, and protein and enzyme characteristics and function Learn the overall cellular and molecular components of cells.	K K	Face to face		Synchronous Lecturing	Written exam	26. A
	1.2	Biomembranes and membrane proteins	Understand the structure of plasma membranes of eukaryotic cells.	K	Face to face		Synchronous Lecturing	Written exam	26.A
	1.3	Protein sorting and transport, and endoplasmic reticulum	Know the different types of membrane proteins. Recognize the role of membrane proteins in transport. Understand the structure and role of the endoplasmic reticulum in protein synthesis and sorting. Understand the role of the endoplasmic reticulum in lipid synthesis.	K K K K	Blended		Asynchronous Lecturing	Written exam	
2	2.1	The Golgi apparatus and	Understand the structure and roles of the Golgi apparatus in the synthesis of cellular molecules.	K	Face to face		Synchronous Lecturing	Written exam	26.A
	2.2	Vesicular transport	Understand the mechanism of vesicular transport.	K	Face to face		Synchronous Lecturing	Written exam	26.A
	2.3	Lysosome, endocytosis, endocytosis	Understand the structure and role of lysosomes and endosomes. Understand the mechanism of endocytosis	K K	Blended		Asynchronous Lecturing	Written exam	

	3.1	lysosomal storage diseases	Recognize and differentiate the different types of lysosomal storage diseases	K	Face to face		Synchronous Lecturing	Written exam	26.A
3	3.2	The mitochondria	Understand the structure of the mitochondria.	K	Face to face		Synchronous Lecturing	Written exam	26.B
	3.3	Mitochondrial diseases	Discuss some examples of mitochondrial diseases.	K	Blended		Asynchronous Lecturing	Written exam	
	4.1	Peroxisomes	Understand the structure and function of peroxisomes.	K	Face to face		Synchronous Lecturing	Written exam	26.A
4	4.2	The nucleus	Understand the structure of the nucleus and the nuclear membrane Discuss some nuclear laminar diseases	K	Face to face		Synchronous Lecturing	Written exam	26.B
	4.3	The actin cytoskeleton Cell movement	Understand the structure and organization of the actin cytoskeleton Understand the role of actin and myosin in cell movement and muscle contraction.	K K	Blended		Asynchronous Lecturing	Written exam	
	5.1	Microtubules Intermediate filaments	Understand the structure and organization of microtubules and their role in vesicular transport. Understand the structure and role of intermediate filaments. Briefly know the association of keratin dysfunction with skin diseases.	K K	Face to face		Synchronous Lecturing	Written exam	26.A
5	5.2	The extracellular matrix	Recall the different components of the extracellular matrix. Recall the steps involving the synthesis of collagen proteins.	K K	Face to face		Synchronous Lecturing	Written exam	26.A

			Know the molecular and cellular changes in a few examples of diseases related to collagen synthesis. Understand the mechanisms of cell-matrix and cell-cell interaction.	K K					
	5.3	Cell signaling	Recall the different modes of cell signaling with emphasis on cell surface receptors and their intracellular signaling molecules and their cellular effects.	K	Blended		Asynchronous Lecturing	Written exam	
6	6.1	The cell cycle	Understand the phases and molecular control of the cell cycle.	K	Face to face		Synchronous Lecturing	Written exam	26.B
	6.2	Cell proliferation and differentiation	Recognize the signals that determine cell proliferation and differentiation	K	Face to face		Synchronous Lecturing	Written exam	26.A, B
	6.3	Cell death	Understand the molecular regulation of cell death.	K	Blended		Asynchronous Lecturing	Written exam	
7	7.1	Nucleic acid structure	Recognize the basic features of DNA/RNA structures.	K	Face to face		Synchronous Lecturing	Written exam	26.A
	7.2	DNA denaturation/renaturation	Comprehend the concept of DNA denaturation/renaturation and the determining factors	K, S, C	Face to face		Synchronous Lecturing	Written exam	26.B
	7.3	Gel electrophoresis	Understand the concept and uses of gel electrophoresis	K, S	Blended		Asynchronous Lecturing	Written exam	
8									
9	9.1	Blotting techniques	Understand the concept of blotting techniques	K, S	Face to face		Synchronous Lecturing	Written exam	26.A
	9.2	Restriction endonucleases	Understand the basics function of restriction endonucleases Apply the concept of electrophoresis and blotting techniques to the use of restriction endonucleases and restriction fragment length polymorphism	K S, K	Face to face		Synchronous Lecturing	Written exam	26.A
	9.3	Recombinant DNA technology	Understand the application of restriction endonucleases in recombinant DNA technology	K, S, C	Blended		Asynchronous Lecturing	Written exam	

	10.1	introduction into the molecular dogma of molecular biology and DNA replication;	Discuss the molecular dogma of molecular biology Learn the main steps and reactions involved in DNA replication	K K	Face to face		Synchronous Lecturing	Written exam	26.A
10	10.2	PCR and quantitative real-time PCR	Learn about the concepts and applications of polymerase chain reaction and quantitative real-time PCR Apply the concepts of electrophoresis to PCR	K, S C	Face to face		Synchronous Lecturing	Written exam	26.B
	10.3	DNA sequencing	Know the composition of the human genome and the concepts and applications of DNA sequencing	K	Blended		Asynchronous Lecturing	Written exam	
	11.1	The human genome	Recognize the composition of the human genome Apply the concepts of electrophoresis, blotting, and PCR to the variation of the human genome	K S, C	Face to face		Synchronous Lecturing	Written exam	26.A
11	11.2	Transcription (1)	Learn the main steps and reactions involved in RNA transcription.	K	Face to face		Synchronous Lecturing	Written exam	26.B
	11.3	Transcription (2)		K	Blended		Asynchronous Lecturing	Written exam	
12	12.1	Regulation of transcription in prokaryotes	Understand the mechanisms of regulating gene expression at the transcriptional level in prokaryotes	K	Face to face		Synchronous Lecturing	Written exam	26.A
	12.2	Regulation of transcription in eukaryotes and epigenetics	Understand the mechanisms of regulating gene expression at the transcriptional level in eukaryotes	K	Face to face		Synchronous Lecturing	Written exam	26.A
	12.3	Analysis of gene expression	Know the different tools for measuring gene expression at the RNA level starting with single genes (northern blotting and in situ hybridization) to high-throughput technologies (real-time transcriptase quantitative real-time PCR, DNA microarrays) Apply the concepts of denaturation/renaturation, electrophoresis, and	K, S, C	Face to face		Synchronous Lecturing	Written exam	26.A

			blotting to the different techniques						
13	13.1	Translation	Learn the main steps and reactions involved in protein translation.	K	Blended		Asynchronous Lecturing	Written exam	
	13.2	Regulation of translation		K	Face to face		Synchronous Lecturing	Written exam	26.A
	13.3	DNA libraries, protein-protein interaction, yeast two-hybrid system, and luciferase reporter assay	Understand the concept and uses of techniques used in determining protein-protein interactions	K, S, C	Blended		Asynchronous Lecturing	Written exam	
14	14.1	Recombinant gene and protein expression	Learn of different techniques used in studying gene expression and gene manipulation Apply the processes of transcription and its regulation	K, S, C	Face to face		Synchronous Lecturing	Written exam	26.B
	14.2	DNA mutations	Recognize the type of DNA mutations	K	Face to face		Synchronous Lecturing	Written exam	26.B
	14.3	DNA repair and CRISPR-Cas9 and gene editing	Know and differentiate the mechanisms of DNA repair	K, S, C	Blended		Asynchronous Lecturing	Written exam	
15	15.1	Revision			Face to face		Synchronous Lecturing	Written exam	
	15.2				Face to face		Synchronous Lecturing	Written exam	
	15.3								

** K: Knowledge, S: Skills, C: Competency

25. Evaluation Methods:

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLOs	Descriptors**	Period (Week)	Platform
Midterm exam	40	Cell biology	1-6	A	8 th week	Paper-based exam
Online activities	5	All blended topics		A B	1 st -14 th week	Moodle
Final exam	60	Molecular biology	7-14	A B C	15 th -16 th week	Paper-based exam

* According to the instructions for granting a bachelor's degree.

**According to the principles of organizing semester work, tests, examinations, and grades for the bachelor's degree.

Mid-term exam specifications table*

(The tables below will be completed on separate forms by course coordinators prior to the conduct of each exam according to Accreditation and Quality Assurance Centre procedures and forms).

No. of questions/ cognitive level						No. of questions per CLO	Total exam mark	Total no. of questions	CLO/ Weight	CLO no.
Create %10	Evaluate %10	analyse %10	Apply %20	Understand %20	Remember %30					
1	1	1	4	2	1	10	100	100	10%	1

Final exam specifications table

No. of questions/ cognitive level						No. of questions per CLO	Total exam mark	Total no. of questions	CLO Weight	CLO no.
Create %10	Evaluate %10	analyse %10	Apply %20	Understand %20	Remember %30					
										1
										2
										3
										4
										5

26. Course Requirements:

- Classroom Lectures
- Internet connection

27. Course Policies:

A- Attendance policies:

Attendance will be monitored by the course coordinator. Attendance policies will be announced at the beginning of the course.

B- Absences from exams and handing in assignments on time:

Will be managed according to the University of Jordan regulations. Refer to <http://registration.ju.edu.jo/Documents/daleel.pdf>

C- Health and safety procedures:

Faculty Members and students must at all times, conform to Health and Safety rules and procedures.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

As a student in this course (and at this university) you are expected to maintain high degrees of professionalism, commitment to active learning and participation in this course and also integrity in your behavior in and out of the classroom. Students violate this policy would be subjected to disciplinary action according to University of Jordan disciplinary policies

E- Grading policy:

Grade-point average, Rules are preset by the Faculty and Department Councils

F- Available university services that support achievement in the course:

Availability of comfortable lecture halls, data show, internet service and E learning website <https://elearning.ju.edu.jo/> .

28. References:

A- Required book(s), assigned reading and audio-visuals:

The Cell: A Molecular Approach, Geoffrey M. Cooper and Robert E. Hausmann, 8th edition, Sinauer Associates, 2019.

B- Recommended books, materials, and media:

Mark's Basic Medical Biochemistry, Smith, Marks and Lieberman, Lippincott, Williams and Wilkins, 6th ed., 2023.

29. Additional information:

--

Name of the Instructor or the Course Coordinator:

Signature:

Date:

٢٠٢٤/١١/٨

Professor Mamoun Ahram

Signature:

Date:

٩/٧/٢٠٢٥

Name of the Head of Quality Assurance Committee/ Department

Dr Enas Al Zayadneh

Signature:

Date:

٩/٧/٢٠٢٥

Name of the Head of Department

Dr Mohammad Khatabeh

Signature:

Date:

٩/٧/٢٠٢٥

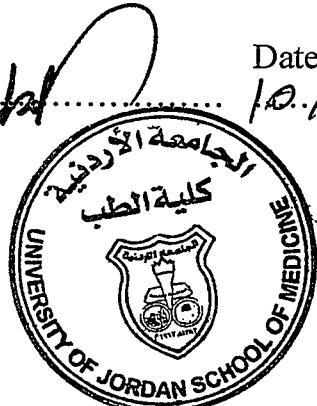
Name of the Head of Quality Assurance Committee/ School or Center

Professor Ayman Wahbeh

Signature:

Date:

١٠/٧/٢٠٢٥


Name of the Dean or the Director

Professor Ayman Wahbeh

Signature:

Date:

١٠/٧/٢٠٢٥

